Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Основные методы решения задач на смешивание растворов

Разделы: Преподавание математики, Преподавание химии


“Только из союза двоих, работающих вместе и при помощи друг друга, рождаются великие вещи.”

Антуан Де Сент-Экзюпери

Математика многообразна и многогранна. Существует ряд ситуаций в образовательном процессе, когда при изучении какой-либо темы по физике, химии, биологии и т.д. затрагиваются понятия математики, например, существуют задачи, которые решают как на уроках математики, так и на уроках химии. Способы решения задач представляют и учителя химии, и математики, но есть проблема: математики знают математику, а химики - химию. И не всегда способы совпадают.

В данной статье приводятся рекомендации по решению химических задач на смешение растворов разными способами: с помощью расчетной формулы, “Правила смешения”, “Правила креста”, графического метода, алгебраического метода. Приведены примеры решения задач.

1. Основные химические понятия

Приведем некоторые указания к решению задач на растворы.

Основными компонентами этого типа задач являются:

а) массовая доля растворенного вещества в растворе;

б) масса растворенного вещества в растворе;

в) масса раствора.

Предполагают, что:

а) все получившиеся смеси и сплавы являются однородными;

б) смешивание различных растворов происходит мгновенно;

в) объем смеси равен сумме объемов смешиваемых растворов;

г) объемы растворов и массы сплавов не могут быть отрицательными.

Определения и обозначения.

Массовая доля растворенного вещества в растворе - это отношение массы этого вещества к массе раствора.

где - массовая доля растворенного вещества в растворе;

- масса растворенного вещества в растворе;

- масса раствора.

Следствия формулы (1):

Введем обозначения:

- массовая доля растворенного вещества в первом растворе;

- массовая доля растворенного вещества во втором растворе;

- массовая доля растворенного вещества в новом растворе, полученном при смешивании первого и второго растворов;

m1(в-ва), m2(в-ва), m(в-ва) - массы растворенных веществ в соответствующих растворах;

m1(р-ра), m2(р-ра), m(р-ра) - массы соответствующих растворов.

Основными методами решения задач на смешивание растворов являются: с помощью расчетной формулы, “Правило смешения”, “Правило креста”, графический метод, алгебраический метод.

Приведем описание указанных методов.

1.1. С помощью расчетной формулы

В наших обозначениях, получим формулу для вычисления массовой доли вещества (?) в смеси.

1. Масса полученного при смешивании раствора равна:

m(р-ра) = m1(р-ра) + m2(р-ра).

2. Определим массы растворенных веществ в первом и втором растворах:

m1(в-ва)= •m1(р-ра), m2(в-ва)=   •m2(р-ра).

3. Следовательно, масса растворенного вещества в полученном растворе вычисляется как сумма масс веществ в исходных растворах:

m(в-ва) = m1(в-ва) + m2(в-ва) = •m1(р-ра) + •m2(р-ра).

4. Таким образом, массовая доля растворенного вещества в полученном растворе равна:

или

или

img9.gif (526 bytes)

где - массы соответствующих растворов.

Замечание: При решении задач удобно составлять следующую таблицу.

 

1-й раствор

2-й раствор

Смесь двух растворов

Масса растворов

m1

m2

m1 + m2

Массовая доля растворенного вещества

Масса вещества в растворе

m1

m2

(m1 + m2)

1.2. “Правило смешения”

Воспользуемся формулой (4):

тогда 

Отсюда

Таким образом, отношение массы первого раствора к массе второго равно отношению разности массовых долей смеси и второго раствора к разности массовых долей первого раствора и смеси.

Аналогично получаем, что при

Замечание: Формула (5) удобна тем, что на практике, как правило, массы веществ не отвешиваются, а берутся в определенном отношении.

1.3. “Правило креста”

“Правилом креста” называют диагональную схему правила смешения для случаев с двумя растворами.

Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху-большая), на пересечении отрезков - заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают в каком отношении надо слить исходные растворы.

1.4. Графический метод

Отрезок прямой (основание графика) представляет собой массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости

Полученная функциональная прямая позволяет решать задачи по определению массы смешанных растворов и обратные, по массе смешанных растворов находить массовую долю полученной смеси.

Построим график зависимости массовой доли растворенного вещества от массы смешанных растворов. На одной из осей ординат откладывают точку, соответствующую массовой доли , а на другой - . Обозначим на оси абсцисс точки А и В с координатами (0,0) и (m1 + m2,0), соответственно. На графике точка А(0,0) показывает, что массовая доля всего раствора равна , а точка В(m1 + m2,0) - массовая доля всего раствора равна . В направлении от точки А к точке В возрастает содержание в смеси 2-го раствора от 0 до m1+ m2 и убывает содержание 1-го раствора от m1+ m2 до 0. Таким образом, любая точка на отрезке АВ будет представлять собой смесь, имеющую одну и ту же массу с определенным содержанием каждого раствора, которое влияет на массовую долю растворенного вещества в смеси.

Замечание: Данный способ является наглядным и дает приближенное решение. При использовании миллиметровой бумаги можно получить достаточно точный ответ.

1.5. Алгебраический метод

Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений.

2. Примеры решения задач

Задача 1. (№1.43, [1])

В 100 г 20%-ного раствора соли д