Вход в Личный кабинет

Пособия для подготовки школьников к сочинению

«Виды сочинений по литературе. 10-11 классы». Методическое пособие для учителя.

«Виды сочинений по литературе. 10-11 классы». Методическое пособие для учителя.

75 руб.

«Сочинение? Легко! 10-11 классы». Пособие для учащихся общеобразовательных организаций

«Сочинение? Легко! 10-11 классы». Пособие для учащихся общеобразовательных организаций

50 руб.

«Подготовка и проведение итогового сочинения по литературе». Методические рекомендации для образовательных организаций

«Подготовка и проведение итогового сочинения по литературе». Методические рекомендации для образовательных организаций

Бесплатно


Уже в продаже в электронном виде в Личном кабинете!

Урок математики в 9-м классе по теме "Бесконечно убывающая геометрическая прогрессия"

Разделы: Преподавание математики


Цели урока:

  1. ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией;
  2. формулирование начального представления о пределе числовой последовательности;
  3. знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии.

Ход урока

1. Проверка домашнего задания.

1) Проверка основных формул, связанных с арифметической и геометрической прогрессиями. Два ученика готовят записи формул у доски.

2) Остальные учащиеся выполняют математический диктант по теме «Формулы суммы».

Задания:

№1. Найдите сумму первых пяти членов арифметической прогрессии, если её первый член равен 6 (1-й вариант), -20 (2-й вариант), а пятый член -6 (1-й вариант), 20 (2-й вариант).

№2. Найдите сумму первых пяти членов арифметической прогрессии, если её первый член равен -20(1-й вариант), 6 (2-й вариант), а разность равна 10(1-й вариант), -3(2-й вариант).

№3. Найдите сумму первых пяти членов геометрической прогрессии, если её первый член равен 1(1-й вариант), -1 (2-й вариант), а знаменатель равен -2(1-й вариант), 2(2-й вариант).

По окончании диктанта, выборочно, у двоих учеников работы проверяются на оценку, остальные выполняют самопроверку по готовым решениям, записанным на отворотах доски.

Решения:

   

2. Изучение новой темы. (демонстрация презентации. Приложение 1)

1) Слайд №2.

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность. Например, последовательность площадей квадратов:

. И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

2) Слайд №3.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Фронтальная работа.

Записать определение: геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача №1.

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

а)

Решение:

а) (фронтальная работа, запись на доске)

данная геометрическая прогрессия является бесконечно убывающей.

б) (самостоятельно)

данная последовательность не является бесконечно убывающей геометрической прогрессией.

Продолжить работу с презентацией.

3) Слайд №4.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

 

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна .

Если n неограниченно возрастает, то

4) Слайд №5.

Записать определение. Суммой бесконечно убывающей геометрической прогрессии называют число, к которому стремится сумма её первых n членов при n →. Теперь получим формулу, с помощью которой будем вычислять сумму бесконечно убывающей геометрической прогрессии.

Рассмотрим формулу n первых членов геометрической прогрессии.

Тренировочные упражнения.

Задача №2. Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3,вторым 0,3.

Решение:

Задача №3. учебник [1], стр. 160, №433(1)

Найти сумму бесконечно убывающей геометрической прогрессии:

Решение:

Задача №4. учебник [1], стр. 160, №434(1)

Найти сумму бесконечно убывающей геометрической прогрессии, если

Решение:

Пользуясь формулой суммы бесконечно убывающей геометрической прогрессии, можно записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Задача №4. Записать бесконечную периодическую десятичную дробь 0,(5) в виде обыкновенной дроби.

1-й способ. Пусть х=0,(5)= 0,555… /•10         2-й способ. 0,(5)=0,555…=

Задача №5. учебник [1], стр. 162, №445(3) (самостоятельное решение)

Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.

Ответ: 0,(12)= 4/33.

5) Слайд №6.

Подведение итогов.

  1. С какой последовательностью сегодня познакомились?
  2. Дайте определение бесконечно убывающей геометрической прогрессии.
  3. Как доказать, что геометрическая прогрессия является бесконечно убывающей?
  4. Назовите формулу суммы бесконечно убывающей геометрической прогрессии.

Самостоятельная работа. (выполняется в рабочих тетрадях с использованием копирок и чистых листов бумаги, по окончании работы, откопированные записи решений сдаются на проверку, а по записям в тетрадях учащиеся выполняют самопроверку по готовым решениям).

Задания (слайд №6):

  1. Является ли геометрическая прогрессия бесконечно убывающей, если: b7= -30; b6= 15?
  2. Найдите сумму бесконечно убывающей геометрической прогрессии: -25; -5; -1;…
  3. Записать бесконечную десятичную периодическую дробь 0,(9) в виде обыкновенной дроби.

Самопроверка (слайд №7).

Домашнее задание.

№435(1;3), 445(4), 436. [1]

Литература:

  1. Алимов Ш.А., Колягин Ю.М., Сидоров и др.- 8-е изд.-М.: Просвещение, 2002.