Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Кристаллические и аморфные тела

Разделы: Преподавание физики


Цель урока:

  1. Раскрыть основные свойства кристаллических и аморфных тел.
  2. Познакомить учащихся с правильной формой кристаллов и со свойством анизотропии, методом моделирования в изучении свойств кристаллов.

С целью политехнического образования показать значение физики твёрдого тела для народного хозяйства.

Оборудование:

  • Набор кристаллических тел, плакаты: “Кристаллы”, “Кристаллические решётки”.
  • Спиртовка, стеклянная палочка, выращённые кристаллы, модели кристаллов.
  • Распечатанная таблица “Свойства кристаллических и аморфных тел”, компьютерная презентация.
  • Выставка кристаллических и аморфных тел.

Ход урока

Вступление: Большинство окружающих нас твердых тел представляют собой вещества в кристаллическом состоянии. К ним относятся строительные и конструкционные материалы: различные марки стали, всевозможные металлические сплавы, минералы и т. д. Специальная область физики—физика твердого тела — занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники.

В любой отрасли техники используются свойства твердого тела: механические, тепловые, электрические, оптические и т. д. Все большее применение в технике находят кристаллы.  Вы, наверное, знаете о заслугах советских ученых — академиков, лауреатов Ленинской и Нобелевской премий А. М. Прохорова и Н Г Басова в создании квантовых генераторов. Действие современных оптических квантовых генераторов — лазеров — основано на использовании свойств монокристаллов (рубина и др.) Как устроен кристалл? Почему многие кристаллы обладают удивительными свойствами? Каковы особенности структуры кристаллов, которые отличают их от аморфных тел? Ответы на эти и аналогичные вопросы вы сможете дать в конце урока. Запишем тему “Кристаллические и аморфные тела”.

Приложение 1.

Изложение нового материала:

Обратимся к пройденному материалу. Какими свойствами обладают твёрдые тела?

Ученик:

1) Они сохраняют форму и объём.

2) В строении имеют кристаллическую решётку.

Учитель: Все твёрдые тела делятся на кристаллические и аморфные. Мы рассмотрим, в чём их сходство и различие.

Что такое кристаллы?

Кристаллы (3 слайд) - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные положения в пространстве. Кристаллы одного и того же вещества имеют разнообразную форму. Углы между отдельными гранями кристаллов одинаковы. Некоторые формы кристаллов симметричны. Цвет кристаллов различен, — очевидно, это зависит от примесей.

Для наглядного представления внутренней структуры кристалла используют его изображение с помощью кристаллической решётки. Различают несколько типов кристаллов:

1) ионные

2) атомные

3) металлические

4) молекулярные.

Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Кристаллические тела делятся на монокристаллы и поликристаллы.

Монокристаллы (5-6 слайд) - одиночные кристаллы (кварц, слюда…) Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии (показывает на таблице, где изображены кристаллы). Плоскость симметрии, ось симметрии, центр симметрии. На первый взгляд кажется, что число видов симметрии может быть бесконечно большим. В 1867 г. русский инженер А. В. Гадолин впервые доказал, что кристаллы могут обладать лишь 32 видами симметрии. Убедимся в симметрии кристаллика снега- снежинки

    

Симметрия кристаллов и другие их свойства, о которых мы будем говорить далее, привели к важной догадке о закономерностях в расположении частиц, составляющих кристалл. Может кто-нибудь из вас попытается ее сформулировать?

Ученик В. Частицы в кристалле располагаются так, что они образуют определенную правильную форму, решетку.

Учитель. Частицы в кристалле образуют правильную пространственную решетку. Пространственные решетки различных кристаллов различны. Перед вами модель пространственной решетки поваренной соли. (Демонстрирует модель.) Шарики одного цвета имитируют ионы натрия, шарики другого цвета — ионы хлора. Если соединить эти узлы прямыми линиями, то образуется пространственная решетка, аналогичная представленной модели. В каждой пространственной решетке можно выделить некоторые повторяющиеся элементы ее структуры, иначе говоря, элементарную ячейку. К наиболее простым элементарным ячейкам относятся куб, объемно-центрированный куб, гранецентрированный куб, гексагональная призма.

(7 слайд) Понятие о пространственной решетке позволило объяснить свойства кристаллов.

Рассмотрим их свойства.

1) Внешняя правильная геометрическая форма(модели)

2) Постоянная температура плавления.

3) (8 слайд) Анизотропия – различие в физических свойствах от выбранного в кристалле направления(показывает пример со слюдой, с кристаллом кварца, двойное лучепреломление)

Но монокристаллы в природе встречаются редко. Но такой кристалл можно вырастить в искусственных условиях(доклады о выращивании кристаллов) <рисунок 3

А сейчас познакомимся с поликристаллами.

Поликристаллы (9 слайд) - это твёрдые тела, состоящие из большого числа кристаллов, беспорядочно ориентированных друг относительно друга(сталь, чугун …)

Поликристаллы тоже имеют правильную форму и ровные грани, температура плавления у них имеет постоянное значение для каждого вещества. Но в отличии от монокристаллов, поликристаллы изотропны, т.е. физические свойства одинаковые по всем направлениям. Это объясняется тем, что кристаллы внутри располагаются беспорядочно, и каждый в отдельности обладает анизотропией, а в целом кристалл изотропен.

Кроме кристаллических тел существуют - аморфные тела.

Аморфные тела (10 слайд) - это твёрдые тела, где сохраняется только ближний порядок в расположении атомов. (Кремнезём, смола, стекло, канифоль, сахарный леденец).

Например, кварц может находиться как в кристаллическом состоянии, так и аморфном - кремнезём. (См. рис в учебнике). Они не имеют постоянной температуры плавления и обладают текучестью (показывает сгибание стеклянной палочки над спиртовкой). Аморфные тела изотропны, при низких температурах они ведут себя подобно кристаллическим телам, а при высокой подобны жидкостям.

О применении кристаллов и некоторых интересных физических явлениях, связанных с кристаллами, можно прочитать в научно-популярных книгах и журналах. И сейчас мы послушаем небольшие сообщения о том, что заинтересовало учеников.

1 ученик (11-12 слайды) Я расскажу о жидких кристаллах. Некоторые органические материалы при переходе из жидкого состояния в твердое имеют промежуточную структуру. Вещество в таком состоянии называют жидким кристаллом. Жидкие кристаллы разделяют на три класса:

1) нематические,

2) смектические,

3) холестерические.

Для жидких кристаллов характерна вытянутая структура молекул, которая приводит к анизотропии свойств. Жидкие кристаллы обладают важными оптическими свойствами, которые в широких пределах изменяются внешними воздействиями. Это и определяет большие возможности управления световыми потоками с помощью жидких кристаллов.

2 ученик: (14 слайд) Я расскажу о роли некоторых добавок в сплавы для увеличения прочности материалов, т. е. для упрочнения.

Правильное расположение атомов в кристаллах далеко не всегда идеально. Размещение атомов в пространстве часто нарушается. Эти области разупорядочения атомов кристаллической решетки называют дефектами. Иногда нарушается правильная структура пространственной решетки вдоль некоторых линий. Эти дефекты называются дислокациями. Обычно примеси в металлах оседают на дислокации. Большое число примесей может полностью блокировать дислокации. Сталь представляет собой сплав на основе железа, содержит значительные примеси углерода, а также различные легирующие добавки (примеси некоторых металлов). Регулируемое упрочнение стали, происходит за счет взаимодействия атомов примеси, в том числе и углерода, с дислокациями и за счет выпадения микроскопических включений карбида железа. В настоящее время это основной путь упрочнения конструкционных материалов.

3 ученик: (15 слайд) Я покажу на примере графита и алмаза, что свойства кристаллических веществ определяются структурой кристаллических решеток.

Между алмазом и графитом оказывается много общего, хотя на первый взгляд это общее трудно увидеть. Алмаз необычно твер