Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Готовимся к экзаменам. Обобщающий урок в 9-м классе по теме "Прогрессии"

Разделы: Преподавание математики


ТИП УРОКА: интегрированный с мультимедийным сопровождением.

ЦЕЛИ:

  1. обобщить знания по теме “Прогрессии”, повторить все формулы по теме;
  2. показать актуальность темы, ее применение в жизнедеятельности человека;
  3. развивать творческие способности учащихся;
  4. продолжить подготовку к выпускному экзамену.

ОБОРУДОВАНИЕ:

  1. таблица “Прогрессии”;
  2. компьютерное обеспечение (презентация учеников).

ПЛАН УРОКА:

  1. вводная часть (исторические сведения о прогрессиях);
  2. сообщение цели урока;
  3. проверка домашнего задания (презентация учащимися своих задач;
  4. решение задач;
  5. задание на дом;
  6. самостоятельная работа (разноуровневая).

ХОД УРОКА

ВВОДНАЯ ЧАСТЬ: ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О ПРОГРЕССИЯХ

(сообщают ученики)

Первые представления об арифметической и геометрической прогрессиях были еще у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать.

В древнеегипетском папирусе Ахмеса (ок. 2000 до н.э.) приводится задача: “Пусть тебе сказано: раздели 10 мер ячменя между 10 людьми так, чтобы разность мер ячменя, полученного каждым человеком и его соседом, равнялась 1/8 меры”.

В этой задаче речь идет об арифметической прогрессии. Условие задачи, пользуясь современными обозначениями, можно записать так: S=10, d=1/8, а1, а2, …, а10.

В одном древнегреческом папирусе приводится задача: “Имеется 7 домов, в каждом по 7 кошек, каждая кошка съедает 7 мышей, каждая мышка съедает 7 колосьев, каждый из которых, если посеять зерно, дает 7 мер зерна. каждая кошка съедает 7 мышей, каждая мышка съедает 7 колосьев, каждый из которых, если посеять зерно, дает 7 мер зерна. нужно подсчитать сумму числа домов, кошек, мышей, колосьев и мер зерна.”

Решение этой задачи приводит к сумме пяти членов геометрической прогрессии.

О прогрессиях и их суммах знали древнегреческие ученые. Так, им были известны формулы n первых чисел последовательности натуральных, четных и нечетных чисел.

Архимед (3 век до н. э.) для нахождения площадей и объемов фигур применял “атомистический метод”, для чего ему потребовалось находить суммы членов некоторых последовательностей. Он вывел формулу суммы квадратов натуральных чисел и показал, как найти сумму бесконечно убывающей геометрической прогрессии.

Отдельные факты об арифметической и геометрической прогрессиях знали китайские и индийские ученые. Об этом говорит, например, известная индийская легенда об изобретателе шахмат.

В древней индии шах Шерам посулил любую награду за интересную игру, к которой он долгой время не потерял бы интерес. Ученый Сета изобрел шахматы и попросил в награду за свое изобретение столько пшеничных зерен, сколько их получится, если на первую клетку шахматной доски положить одно зерно, на вторую - в 2 раза больше, т. е. 2 зерна, на третью - еще в 2 раза больше, т. е. 4 зерна, и т. д. до 64 клетки.