Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Урок по теме "Решение задач на вычисление площади четырехугольников"

Разделы: Преподавание математики


Урок рассчитан на один академический час и проводится после того, как изучены формулы для вычисления площадей треугольников, прямоугольника, квадрата, параллелограмма и трапеции.

Цели урока:

  1. Образовательные: повторить ранее изученные формулы для вычисления площадей выпуклых фигур, вывести и научиться пользоваться формулами для вычисления площадей выпуклых четырехугольников, имеющих перпендикулярные диагонали;
  2. Развивающие: развитие логического мышления, памяти, внимания, выработка математической зоркости;
  3. Воспитательные: воспитание трудолюбия, интереса к предмету, умение внимательно выслушивать ответы одноклассников.

Необходимое оборудование:

  • компьютер,

  • проектор.

Ход урока.

  1. Организационный момент.
  2. Устная работа.

Проводится по чертежам, выведенным с проектора на экран.

Задание. Для каждой из геометрических фигур найти площадь, назвав используемую формулу. Опрос ведется фронтально, учащиеся могут отвечать по желанию.

  1. Введение новых знаний.

Учитель обращает внимание учащихся на то, что до сих пор, в основном, площади фигур вычислялись по двум элементам: основанию и высоте, проведенной к основанию. Однако, в случае, если в четырехугольнике диагонали взаимно перпендикулярны, его площадь можно вычислить, зная длины диагоналей.

Учитель просит учащихся сформулировать тему урока. Учащиеся предлагают свои варианты темы урока. Принимается такая: «Вычисление площади выпуклого четырехугольника, имеющего взаимно перпендикулярные диагонали».

Задача. Доказать, что площадь выпуклого четырехугольника, имеющего взаимно перпендикулярные диагонали, равна половине произведения его диагоналей.

Запись на доске.

Дано:

ABCD – вып. четырехугольник,

AC ┴ BD.

Доказать:

SABCD=1/2 ACBD.

Доказательство:

  1. пусть AC ∩ BD = O, тогда

SABC=1/2 ACBО, т.