Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Расчет давления жидкости на дно и стенки сосуда

Разделы: Преподавание физики


«Кто смолоду больше делает и думает сам, тот становится потом надежнее, крепче, умнее».  С. Нерис

Цели урока:

  • Образовательные:
    1. активизировать знания учащихся о причинах возникновения давления жидкости,
    2. создать условия для овладения учащимися формулы для расчета давления жидкости на дно и стенки сосуда,
    3. продолжить работу по формированию навыков научного познания мира,
    4. создать условия для овладения учащимися эвристическим методом представления наблюдаемого явления – методом графических образов.
  • Развивающие:
    1. развивать экспериментальные умения, навыки логического мышления, умение обосновывать свои высказывания, делать выводы, выделять главное, представлять информацию в различных знаковых системах,
    2. развивать у учащихся интерес к познанию законов природы и их применению;
    3. развивать умение проводить рефлексию своей деятельности.
  • Воспитательные:
    1. создать условия для приобретения убежденности учащихся в познаваемости окружающего мира,
    2. приучать учащихся к доброжелательному общению, взаимопомощи, к самооценке.

Задачи урока:

  • изучение теоретического материала;
  • решение задач на расчет давления в жидкости и газе;
  • практическое значение знаний о давлении жидкости.

План урока:

  1. Организационный момент. (1 мин.)
  2. Актуализация знаний. (5 мин.)
  3. Объяснение материала. (20 мин.)
  4. Закрепление материала. (15 мин.)
  5. Рефлексия. (2 мин.)
  6. Домашнее задание. (2 мин.)

Ход урока

I. Организационный момент.

(На партах учащихся лежат рабочие карты урока, в которых представлены две самостоятельные работы и критерии выставления оценки; две ручки с разными стержнями, например синий и зеленый; таблицы плотностей веществ, учебники и тетради).

II. Актуализация знаний.

Самостоятельная работа (см. рабочую карту)

III. Объяснение нового материала

Провожу эксперимент: в пластмассовую бутылку с тремя отверстиями на разных уровнях по высоте наливаем подкрашенную воду.

Беседа с классом:

  • почему вода вытекает из сосуда?
  • сравните струи воды?
  • объясните, почему они разные?

Когда учащиеся объяснят, что столбы жидкости разные и давление на разной глубине разное, ставлю проблему: а нужно ли знать людям, чему равно давление жидкости на разных глубинах, на дно, на стенки сосуда?

Открываем тетради, записываем тему урока.

Ставим цель: вывести формулу для расчета давления жидкости на дно и стенки сосуда.

Давление жидкости (см. презентация)

Вокруг нас много жидкостей. Одни из них движутся, например, вода в реках или нефть в трубах, другие – покоятся. При этом все они имеют вес и поэтому давят на дно и стенки сосуда, в котором находятся. Подсчет давления движущейся жидкости – непростая задача, поэтому изучим лишь как рассчитывать давление, создаваемое весом покоящейся жидкости. Оно называется гидростатическим давлением и вычисляется по следующей формуле.

Формула для подсчета давления слоя жидкости высотой h. Формула читается так: 'Пэ равно ро жэ аш'
p – давление слоя жидкости, Па
ρ – плотность жидкости, кг/м3
g – коэффициент, Н/кг
h – высота слоя жидкости, м

Рассмотрим, как выведена эта формула. Сила F, с которой жидкость давит на дно сосуда, является весом жидкости. Его мы можем подсчитать по формуле F тяж = mg, так как жидкость и ее опора (дно сосуда) покоятся. Вспомним также формулу m = ρV для выражения массы тела через плотность его вещества и формулу V = Sh для подсчета объема тела, имеющего форму прямоугольного параллелепипеда. В результате имеем равенство:

Жидкость, налитая в прямоугольный сосуд, принимает форму прямоугольного параллелепипеда с площадью основания S и высотой h

Способ вывода формулы для подсчета гидростатического давления - частного случая формулы p=F/S

Это равенство иллюстрирует не только способ вывода формулы для вычисления гидростатического давления. Оно также показывает, что формула p = ρgh является частным случаем определения давления – формулы p = F/S.

Заметим также, что при выводе формулы совсем необязательно предполагать, что слой высотой h и плотностью ρ образован именно жидкостью. В наших рассуждениях ничего не изменится, если вместо давления жидкости мы рассмотрим давление твердого тела прямоугольной формы или даже газа, заключенного в соответствующий сосуд. Создаваемое ими весовое давление будет именно таким, как предсказывает формула p = ρgh.

Формула p = ρgh показывает, что давление, создаваемое слоем жидкости, не зависит от ее массы, а зависит от плотности жидкости, высоты ее слоя и места наблюдения. При увеличении толщины слоя жидкости или ее плотности гидростатическое давление будет возрастать.

Полученный нами вывод можно проверить опытами. Проделаем их. Справа изображена стеклянная трубка с водой, дно которой затянуто тонкой резиновой пленкой. Увеличивая высоту слоя налитой жидкости, мы будем наблюдать увеличение растяжения пленки. Этот опыт подтверждает, что при увеличении высоты слоя жидкости создаваемое ею давление увеличивается.

На следующем рисунке изображены трубки с водой и "крепким" раствором соли. Видно, что уровни жидкостей находятся на одной и той же высоте, но давление на пленку в правой трубке больше. Это объясняется тем, что плотность раствора соли больше, чем плотность обычной воды.

Трубка, дно которой затянуто резиновой пленкой, помогает сравнивать давления жидкостей. Этот рисунок показывает, что более плотная жидкость создает большее давление

На доске нарисован параллелепипед высотой h и площадью основания S. Предлагаю ребятам представить, что это аквариум, в котором налита вода. Попытаемся определять давление воды Р на дно аквариума. Работаем на магнитной доске с карточками, выкладывая поочередно формулы, получая цепочку: m=ρV, V=Sh, m=ρSh, P=gm, P=gρSh, ρ=P/S, p=ρgh.

Анализируем окончательную формулу: что же нужно знать, чтобы рассчитать давление жидкости.

Зависит ли давление от площади или формы сосуда?

Вьполняем фронтальный эксперимент: на каждой парте стоит стакан с водой. Высота налитой воды оди