Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Формирование ключевых компетенций на уроках математики

Разделы: Преподавание математики


Концепция модернизации российского образования ставит перед общеобразовательной школой ряд задач, одна из которых – формирование ключевых компетенций, определяющих современное качество содержания образования [4].

Под ключевыми компетенциями понимается целостная система универсальных знаний, умений, навыков, а так же опыт самостоятельной деятельности и личной ответственности обучающихся.

От педагога требуется научить детей тем знаниям, обучить тем умениям и развить те навыки, которыми современный ученик сможет воспользоваться в своей дальнейшей жизни.

Задача системы образования всегда состояла в формировании у подрастающего поколения тех знаний, поведенческих моделей, ценностей, которые позволят ему быть успешным вне стен школы. В современной экономике конкурентоспособность человека на рынке труда во многом зависит от его способности овладевать новыми технологиями, адаптироваться к изменяющимся условиям труда, ориентироваться в гигантских информационных потоках.

В науке нет общего подхода к понятию компетентность, каждый автор понимает его по-своему. В этом широком контексте трактовки компетентности в мире продолжается работа по изменению содержания стандартов и процедуры аттестации преподавателей. В этом же контексте в России в 2001 году были сформулированы основные положения компетентностного подхода в образовании, узловое понятие которого – компетентность.

Ключевой характеристикой компетентности является возможность переносить способности в условия, отличные от тех, в которых эта компетентность изначально возникла.

А. В. Хуторским предложено содержание основных ключевых компетенций, в перечень которых входят: ценностно-смысловая, общекультурная, учебно-познавательная, информационная, коммуникативная, социально-трудовая, личностная компетенции.

Любому человеку необходимо быть эффективным, конкурентоспособным работником, быть творческим, самостоятельным, ответственным, коммуникабельным человеком, способным решать проблемы личные и коллектива. Ему должна быть присуща потребность к познанию нового, умение находить и отбирать нужную информацию.

Все эти качества можно успешно формировать в школе, используя компетентностный подход в обучении любому предмету, в том числе и математике, что является одним из личностных и социальных смыслов образования.

У учащихся формируются ключевые компетенции – универсальная целостная система знаний, умений, навыков, опыт самостоятельной деятельности и личной ответственности.

Развитие ключевых компетенций на уроках математики начиная с 5 класса.

Ценностно-смысловая компетенция

Ученик должен четко для себя представлять, что и как он изучает сегодня, на следующем занятии и каким образом он сможет использовать полученные знания в последующей жизни. Для развития этого вида компетентности можно применять следующие приемы.

1. Перед изучением новой темы учитель рассказывает учащимся о ней, а учащиеся формулируют по этой теме вопросы, которые начинаются со слов: “зачем”, “почему”, “как”, “чем”, “о чем”, оценивается самый интересный, при этом ни один из вопросов не остается без ответа. В результате учащиеся четко представляют, что, когда и как они будут изучать. Кроме того, данный прием позволяет им понять не только цели изучения данной темы в целом, но и осмыслить место урока в системе занятий, а, следовательно, и место материала этого урока во всей теме.

2. На каком-либо конкретном занятии учащиеся самостоятельно изучают отдельные параграфы учебника и составляют краткий конспект этого параграфа. Перед ними стоит задача – пересказать или пояснить прочитанное, выделить, обозначить, подвести итог, подчеркнуть, перечислить, произнести.… В итоге учащиеся не только более глубоко понимают изучаемый материал, но и учатся выбирать главное, обосновывать его важность не только для других, но и, самое главное, для себя.

3. Подходит проведение предметной олимпиады, которая включает в себя нестандартные задания, требующие применения учеником именно предметной логики, а не материала из школьного курса.

Рассмотрим предложенную детям задачу:

“Вася учится в 11 классе, а Коля – в 7 классе. В каком классе учился Коля, когда Вася был в 6 классе?” При решении данной задачи ученикам важно выделить в её решении два действия: а) нахождение разницы в возрасте между детьми, б) нахождение конечного ответа. Большинство учеников найдут верный ответ, но лишь несколько из них, как показывает опыт, смогут правильно составить краткую запись – наглядное изображение задачи, и именно у этих учеников развито математическое мышление, они смогли интерпретировать текст задачи схематически.

4. В этом виде компетенции можно говорить и о профориентации, именно в школьные годы мы способствуем выбору детьми той сферы, которая им наиболее интересна – это либо гуманитарная сфера, либо сфера точных наук. Некоторые из задач подобного рода требуют не только знания математики и арифметики, но и практической смекалки, умения ориентироваться в конкретной обстановке. Вот некоторые из них.

Практические задачи:

  • Сколько будет стоить жалюзи на одно окно, если проем окна составляет 2м 10см в высоту и 2м в ширину, стоимость одной планки размером 1, 5 см на 1м составляет 80 рублей, работа по сбору изделия стоит 200 рублей
  • Каких размеров потребуется лист картона для изготовления коробки без крышки длиной 17см, шириной 13 см и высотой 5см?
  • Сколько листов железа размером 120см на 105 см необходимо купить для изготовления 19 ящиков без крышки длиной 40см, шириной 25 см и высотой 10см
  • Сколько погонных метров линолеума шириной 2,5 необходимо купить для покрытия пола длиной 7м и шириной 5м
  • Школа отправляет учащихся на экскурсии: 424 человека выезжают в Уфимский государственный краеведческий музей и 477 человек в Стерлитамакский драматический театр. Сколько мест должно быть в автобусах, чтобы каждый человек имел свое место и все места были заняты. Сколько таких автобусов необходимо заказать.
  • Вы затеяли ремонт в квартире, сколько олифы и сухих смесей необходимо закупить для приготовления 5 кг замазки, если из 500 грамм олифы и 1500 г сухих смесей получается 2кг замазки.
  • Скороспелый сорт комнатных помидор дает первые спелые плоды на 96 день после посева. Когда необходимо посеять помидора чтобы первые плоды созрели к 31 декабря?

Общекультурная компетенция

Использование материала из других наук на уроках математики, и использование понятий и методов математики на других уроках и в жизни. Очень часто ученики, уверенно используя какие-то умения на одном предмете, далеко не всегда смогут применить его на другой дисциплине. На уроках математики учитель может помочь ребенку прояснить задачу, выделить предметную составляющую, показать применение известных способов в новой ситуации. Например, при решении текстовых задач с помощью систем уравнений на уроках физики и химии дети испытывали трудности. Причины – сложно построить математическую модель процесса, присутствие непривычных символов, непонимание условия задачи, ее особенностей, стратегии ее решения, неспособность применить математический аппарат в новых обозначениях. Пути устранения этих проблем:

1. Продемонстрировать некоторые способы работы с символическим текстом, раскрывая смысл, логику, особенности преобразований;

2. Можно организовать работу с символическим текстом, в которой необходимо переводить текст с обычного языка на математический, с геометрического – на язык векторов, а также переводить модель, заданную одним способом, в иную модель, т.е. перефразировать задачу.

Эффективность работы возрастает при хороших межпредметных связях учителей по поводу одного предметного умения или при использовании методов одной науки в другой. Работа учителей состоит в создании условий для накопления опыта детей и его осмысления.

3. В формировании грамотной, логически верной речи хорошо помогает составление математического словаря, написание математического диктанта, выполнение заданий, направленных на грамотное написание, произношение и употребление имен числительных, математических терминов.

4. В ходе проведения внеклассных мероприятии, предметных недель можно практиковать написание сказок, фантастических историй, рассказов на заданные темы: “Натуральные числа и ноль”, “Отрицательные и положительные числа”, “Проценты и дроби” и т.п.

5. При решении текстовых задач в условии могут быть умышленно пропущены числа или заменены словом (год, неделя, сутки, десятиэтажный дом и т.п.) Предлагается выбрать из записанных на доске чисел те, которыми могла быть выражена данная величина (скорость, цена, масса). Кроме того, можно предложить текстовые задачи со скрытой информативной частью. Например: “Известно, что ученик второго класса должен спать 10 часов в сутки. Сколько в этом случае часов он будет бодрствовать?”. Таким образом, работая над данной задачей, ребёнок невольно усваивает общепринятые гигиенические нормы.

Важно при подведении итогов урока акцентировать внимание учеников не только на математических составляющих урока, но и на общекультурных.

6. По уравнению, схеме к задаче составляются различные текстовые задачи, которые могут быть решены при помощи этого уравнения или схемы. Если решение требует большого количества действий, то к условию составляется минимальное количество вопросов, ответив на которые можно ее решить.

7. По тексту задачи можно составить перечень вопросов начиная с вопроса задачи. На пример: Какие данные надо знать, чтобы ответить на вопрос задачи? Какие из необходимых данных известны по условию задачи? Каких данных недостает? И т.д.

Учебно-познавательная компетенция

Познавательный интерес является основой положительного отношения к учению. Под его влиянием у человека постоянно возникают вопросы, ответы на которые он сам постоянно и активно ищет. При этом поисковая деятельность школьника совершается с увлечением, он испытывает эмоциональный подъем, радость от удачи. Познавательный интерес – это один из важнейших мотивов обучения школьников. Активизация познавательной деятельности ученика без развития его познавательного интереса не только трудна, но практически и невозможна. Особенно эффективно данный вид компетентности развивается при решении нестандартных, занимательных, исторических задач, задач-фокусов, а так же при проблемном способе изложения новой темы: учитель создает такую ситуацию, чтобы проблема опиралась на личный опыт ребенка.

При изучении начального геометрического материала (длина окружности, периметр и площадь прямоугольника, объем прямоугольного параллелепипеда) можно дать следующие задачи:

– Нахождение периметра:
Вам необходимо огородить свой садовый участок прямоугольной формы, сколько метров изгороди необходимо изготовить, если длина участка 55м, а его ширина 20м.

– Координатная плоскость:
Соединить отрезками точки с заданными координатами, в результате получится фигура.

В координатной плоскости из отрезков построить фигуру и записать координаты точек – узлов.

– Мини-исследования на основе изучения геометрического материала (от “плоских” фигур до “объемных”).

По развертке собрать модели многогранников, исследуя простейшие свойства стереометрических фигур, получая начальные геометрические сведения.

Задание-исследование: “Определение зависимости длины окружности от радиуса”. Результатом экспериментальной деятельности с помощью реальных, доступных шестикласснику предметов (нитка, посуда, имеющая форму цилиндра) становится приближенное значение числа ?.