Вход в Личный кабинет

Подписка

  • Цветной журнал с электронными приложениями;
  • Бумажные и электронные версии;
  • Скидки постоянным подписчикам.

Вы можете ознакомиться с номером журнала.

Оформить подписку

Делимость суммы и произведения

Разделы: Преподавание математики


Цели урока:

  • выработка навыка решения заданий на применение свойств делимости суммы и произведения;
  • включение каждого учащегося в осознанную учебную деятельность;
  • Развивать творческие способности, математическую культуру, умение выявлять закономерности, обобщать.

Оборудование: доска, таблица, учебная литература, компьютер, проектор, экран.

Ход урока

1. Организационный момент

2. Актуализация опорных знаний

Математический диктант

1 вариант 2 вариант
1. Какие из высказываний верные:

а) если число а делится на 6, то оно делится на 12*;

б) если число а не делится на 6, то оно не делится на 12

1. Какие из высказываний верные:

а) если число а делится на 12, то оно делится на 6;

б) если число а не делится на 12, то оно не делится на 6

2. Пусть F – множество чисел, кратных 33. Принадлежит ли множеству F:

а) любое число, кратное 90

2. Пусть F – множество чисел, кратных 33. Принадлежит ли множеству F:

а) любое число, кратное 11

3. Найдите пересечения:

а) множества четных чисел и множества чисел, кратных 4

3. Найдите пересечения:

а) множества чисел, кратных 3, и множества чисел, кратных 7

3. Усвоение новых знаний

Учащиеся делятся на 4 группы. Каждая группа изучает одно из свойств, доказательство этого свойства.

Рассмотрим некоторые свойства делимости суммы и произведения.

1. Если в сумме целых чисел каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Доказательство проведем для трех слагаемых. Если числа a, b, и c делятся на p, то a=pk, b=pm, c=pn, где k,m и n – целые числа. Тогда

a+b+c=pk+pm+pn=p(k+m+n),

и так как k +m+n – целое число, то a+b+c делится на p.

В случае произвольного числа слагаемых прием доказательства остается тем же. Очевидно, что обратное утверждение неверно.

2. Если два целых числа делятся на некоторое число, то их разность делится на это число.

Это свойство следует из предыдущего, так как разность a-b всегда можно представить в виде суммы a+(-b) .